×
Array
(
[fid] => 6903
[description] => 汇聚千万菠菜人经过无数次摸爬滚打总结出的原创经验打法,更是菠菜高手纯粹交流殿堂。
[password] =>
[icon] => 27/common_6903_icon.png
[redirect] =>
[attachextensions] =>
[creditspolicy] => Array
(
[post] => Array
(
[usecustom] => 1
[cycletype] => 1
[cycletime] => 0
[rewardnum] => 5
[extcredits1] => 1
[extcredits2] => 1
[extcredits3] => 0
[extcredits4] => 0
[extcredits5] => 0
[extcredits6] => 0
[extcredits7] => 0
[extcredits8] => 0
[rid] => 1
[fid] => 6903
[rulename] => 发表主题
[action] => post
[fids] => 32,52,67,447,1120,1151,1156,6750,6762,6763,6766,6769,6772,6773,6787,6796,6808,6809,6810,6813,6814,6820,6829,6830,6846,6856,6864,6865,6827,6930,6931,6776,6858,6880,6764,6932,6871,6758,6905,1116,6788,6812,6798,6736,6759,6842,6966,6767,6828,6924,6935,6936,6938,6940,6941,6826,6909,6803,6919,6911,6908,6881,6920,6912,6913,6921,6925,6922,6789,6818,6819,6872,6928,6969,6889,6888,6917,6939,6947,6961,6937,6943,6970,6869,6900,6902,6783,6817,1111,6870,6821,6951,6876,6952,6954,6960,6942,6910,6949,6962,6963,6964,6927,6926,6973,6728,6929,6874,6894,6896,6885,6857,6868,1113,6778,56,6844,6878,6802,6933,6811,6923,6877,6875,6918,6892,6757,6832,6833,6795,6793,6848,6837,6849,6850,6851,6852,6853,6854,6863,6882,6836,6790,6838,6794,6791,6873,555,6895,6934,6958,6944,6945,6907,6779,6886,6950,6904,6956,6862,6957,6855,6955,6959,6914,6965,6971,6972,6953,6975,6976,6799,6974,6824,6815,6891,6866,6979,1121,6977,6765,6948,6879,6845,6903
)
[reply] => Array
(
[usecustom] => 1
[cycletype] => 1
[cycletime] => 0
[rewardnum] => 0
[extcredits1] => 0
[extcredits2] => 1
[extcredits3] => 10
[extcredits4] => 0
[extcredits5] => 0
[extcredits6] => 0
[extcredits7] => 0
[extcredits8] => 0
[rid] => 2
[fid] => 6903
[rulename] => 发表回复
[action] => reply
[fids] => 32,52,67,447,1120,1151,1156,6750,6763,6766,6769,6772,6773,6787,6796,6808,6809,6810,6813,6814,6820,6829,6830,6846,6856,6864,6865,6827,6930,6931,6776,6858,6880,6764,6932,6871,6758,1116,6788,6812,6798,6736,6759,6842,6966,6767,6828,6924,6935,6936,6938,6940,6941,6826,6909,6803,6919,6911,6908,6881,6920,6912,6913,6921,6925,6922,6789,6818,6819,6872,6928,6969,6889,6888,6917,6939,6947,6961,6937,6943,6970,6869,6900,6902,6783,6817,1111,6870,6821,6951,6876,6952,6954,6960,6942,6910,6949,6962,6963,6964,6927,6926,6973,6728,6929,6874,6894,6896,6885,6857,6868,1113,6778,56,6844,6878,6802,6933,6811,6923,6877,6875,6918,6892,6757,6832,6833,6795,6793,6848,6837,6849,6850,6851,6852,6853,6854,6863,6836,6790,6838,6794,6791,6873,555,6895,6934,6958,6944,6945,6907,6779,6886,6950,6904,6956,6862,6957,6855,6955,6959,6914,6965,6971,6972,6953,6975,6976,6799,6974,6824,6815,6891,6866,6979,1121,6977,6765,6948,6879,6845,6903
)
)
[formulaperm] => a:5:{i:0;s:0:"";i:1;s:0:"";s:7:"message";s:0:"";s:5:"medal";N;s:5:"users";s:0:"";}
[moderators] => 实习版主1
[rules] =>
[threadtypes] => Array
(
[required] => 1
[listable] => 1
[prefix] => 1
[types] => Array
(
[716] => 版块公告
[1510] => 打法练习
[1511] => 打法交流
[1659] => 入驻合作
[1745] => 提现流水
)
[icons] => Array
(
[716] =>
[1510] =>
[1511] =>
[1659] =>
[1745] =>
)
[moderators] => Array
(
[716] => 1
[1510] =>
[1511] =>
[1659] =>
[1745] =>
)
)
[threadsorts] => Array
(
)
[viewperm] => 26 22 11 12 13 14 15 27 43 44 60 61 62 63 64 67 68 73 75 76 83 84 87 90 91 92 33 38 57 58 65 66 74 77 79 80 85 86 1 2 3 7
[postperm] => 22 11 12 13 14 15 27 43 44 60 61 62 63 64 67 68 73 75 76 83 84 87 90 91 92 33 38 57 58 65 66 74 77 79 80 85 86 1 2 3
[replyperm] => 26 22 11 12 13 14 15 27 43 44 60 61 62 63 64 67 68 73 75 76 83 84 87 90 91 92 33 38 57 58 65 66 74 77 79 80 85 86 1 2 3
[getattachperm] => 26 22 11 12 13 14 15 27 43 44 60 61 62 63 64 67 68 73 75 76 83 84 87 90 91 92 33 38 57 58 65 66 74 77 79 80 85 86 1 2 3
[postattachperm] => 26 22 11 12 13 14 15 27 43 44 60 61 62 63 64 67 68 73 75 76 83 84 87 90 91 92 33 38 57 58 65 66 74 77 79 80 85 86 1 2 3
[postimageperm] => 26 22 11 12 13 14 15 27 43 44 60 61 62 63 64 31 67 68 73 75 76 83 84 87 90 91 92 33 38 57 58 65 66 74 77 79 80 85 86 1 2 3
[spviewperm] =>
[seotitle] =>
[keywords] =>
[seodescription] =>
[supe_pushsetting] =>
[modrecommend] => Array
(
[open] => 0
[num] => 10
[imagenum] => 0
[imagewidth] => 300
[imageheight] => 250
[maxlength] => 0
[cachelife] => 0
[dateline] => 0
)
[threadplugin] => Array
(
)
[replybg] =>
[extra] => a:2:{s:9:"namecolor";s:0:"";s:9:"iconwidth";s:2:"60";}
[jointype] => 0
[gviewperm] => 0
[membernum] => 0
[dateline] => 0
[lastupdate] => 0
[activity] => 0
[founderuid] => 0
[foundername] =>
[banner] =>
[groupnum] => 0
[commentitem] =>
[relatedgroup] =>
[picstyle] => 0
[widthauto] => 0
[noantitheft] => 0
[noforumhidewater] => 0
[noforumrecommend] => 0
[livetid] => 0
[price] => 0
[fup] => 6729
[type] => forum
[name] => 理论实战大厅
[status] => 1
[displayorder] => 4
[styleid] => 0
[threads] => 15568
[posts] => 529025
[todayposts] => 0
[yesterdayposts] => 2
[rank] => 8
[oldrank] => 10
[lastpost] => 2775364 【星宝】10月20日投注流水35809元 1761540098 舞出精彩
[domain] =>
[allowsmilies] => 1
[allowhtml] => 1
[allowbbcode] => 1
[allowimgcode] => 1
[allowmediacode] => 0
[allowanonymous] => 0
[allowpostspecial] => 0
[allowspecialonly] => 0
[allowappend] => 0
[alloweditrules] => 1
[allowfeed] => 0
[allowside] => 0
[recyclebin] => 1
[modnewposts] => 2
[jammer] => 1
[disablewatermark] => 0
[inheritedmod] => 1
[autoclose] => 0
[forumcolumns] => 3
[catforumcolumns] => 0
[threadcaches] => 0
[alloweditpost] => 1
[simple] => 8
[modworks] => 1
[allowglobalstick] => 1
[level] => 0
[commoncredits] => 0
[archive] => 0
[recommend] => 0
[favtimes] => 4
[sharetimes] => 0
[disablethumb] => 0
[disablecollect] => 0
[ismoderator] => 0
[threadtableid] => 0
[allowreply] =>
[allowpost] =>
[allowpostattach] =>
)
当前离线
经验:
天策币:
活跃币:
策小分:
总在线: 4096 小时
本月在线: 30 分钟
|
|
了解机率和或然率 2 X" C; N+ r5 M8 t+ G& t
概率,也就是机率,机率是属于数学中或然率的一部分。或然率可用於我们生活中的每个部分: 5 t" @9 p$ f' w- b, u( t
天气、科学、商业、保险、股票药学等。明天会下雨吗?男人平均能活多久?医生,我有多少机会?它合用范围很广,这个在数学中重要的一环,和DB及对DB的分析息息相关。
2 H+ z- r r) R1 ^2 `0 f$ r Z2 W/ w/ a
一堂速成的或然率课程
0 M( l; b3 u8 U8 k" r那么,什么是或然率?它是对机会规则的研究。大部分的人都很熟悉它的基本概念--或然率可以用来衡量一件事多常发生,或者更精确地说,可以期望它发生。虽然有些或然率专家们试著做统计,卻始终无法肯定;地球被小行星撞击的机率,或者一个小孩长大后成为百万富翁或奥运选手的机率。然而,其他的机率,包括DB中的机率,因为涉及的是我们知道全部结果的机制,因此可以准確地预测它的或然率。如果你丢一个普通的铜板,你掷岀正反两面的机率是一致的。丢铜板有两种结果,因此你丢岀正面的机率是1/2--每两次你有一次丢岀正面的机会。
$ `2 k0 d4 o$ d1 D$ U7 J+ T) H所以,机率对一特定事件(我们称之为X)的发生来说也是一样的。它把X可能发生的数目,和所有可能发生的总数(我们称之为Y)相比。可以这样来表示机率--写成P(X) ,读成「X发生的机率」--可以比率或分数的方式表达之。 f" G" g8 j( K7 N
P(X)=获得X结果的数目/所有可能的结果(或Y)
4 e$ h( ]/ D9 a1 ^& Z所以,在一副标准的52张牌中,抽中一点的机率是: $ i- w- Y' A! N/ B& \3 A4 c
P(拿到一点的机率)= 一点的牌数/所有的牌数 6 j, K7 @$ @ ?/ g. \" }9 \9 F4 }$ ?
= 4/52
" V! V, x+ H' H3 \. p =1/13 5 z& G6 B. ?$ a6 {1 Q4 f
' g i. `1 z0 Z9 k* Z; o ~" D' F& S5 Q, J( M7 x# A0 |
其他任何一种机率的表达方式 ) ?/ Q. @+ p3 e* @' U
机率有许多表达方式。虽然它们所指的都是同一个东西,但是在不同的情形下,某一种形式可能会比其他的来得方便。我们就来看看在52张牌中拿到梅花的机率。 8 X0 {! [& w7 ^
P(拿到一张梅花)=梅花的牌数/所有的牌数
! X0 U( [. {$ [) @ =13/52
% F" u# g; H% e1 v6 f =1/4 ! R: u4 b5 k9 P+ O
首先你要注意的是,13/52这个分数应该化简成1/4。一个简化过的、较为简单的形式通常看起来会比较顺眼,也比较有意义。如果你在书中看到一个机率,没办法一看就有感觉,那么很可能你必须先化简它。 2 A6 `, \+ K; Z1 C. c1 f
让我们来看看几种拿到梅花的机率的方式。我们可以用小数的方式,0.25来表示四次中有一次的机会,或是说有25%的机会拿到梅花。
3 |; d9 _! Y4 H) t1 I5 Q; ~当人们说机率是50-50,他们指的就是两次中有一次的机会,也就是有50%的机会会出现这种情形,而有50%的机会不会出现。表示机率的时候,有时候我们用分数,有时候用小数,而有时候用百分比。 2 v4 E/ Z _8 M8 M
表达某一事件机率的不同方法 8 v( r% h3 s3 x2 A7 t
1)事件 抽到梅花 0 o& Y2 s- p$ |. A8 w* v- o
2)敘述 梅花的牌数/总牌数
# _* Z0 B5 c& x3)分数 13/52=1/4 , S) n; [( V( N9 `! Z, F: @# t9 m
4)小数 0.25 - c5 r; o* }# P7 y9 ~) F
5)百分比 25%(小数X100) 7 `% k; M" B3 M7 r$ j& e
6)发生率 四次中有一次 - c+ c8 c& g" x. i
7)比 3:1
3 w h9 i1 k, f, z+ v: B3 R( j' K
基本机率法则 2 Y% t6 ] J- ~2 E" b. ?
如果你能了解以下的规则,那么就不难理解大部分对DB的解释和分析。 $ b1 F6 e( U: y) p! m# x
(1)任一事件发生的机率必介於0和1之间 , f$ v, Y5 w2 b
当机率为0时,表示该事件不可能发生;例如:用一个正常的六面骰子掷出7点的机率,这是绝对不可能发生的。
; m# j' ?5 O2 ]- U当机率为1时,该事件百分之百会发生;例如,用一个正常的骰子,掷出1到6点的机率即为1(当然扣除骰子边沿著地的机会)。 % v; m6 I7 _0 ?+ C1 z
机率永远不会有负数--0(表示该事件不可能发生),小於0的数字不具任何意义。
" {! v$ s5 i. ^/ ^0 U' M8 B(2)一件事会发生和不会发生的机率总和为1 * N; [1 _" y$ G$ X3 C
为什么呢?因为所有结果加起来的机率一定是1(100%)--不管是不是你要的结果,一定有事会发生。
2 u7 d3 W2 a0 r) a9 Q k; N例如:用骰子掷出2的机率为1/6,加上掷出不是2的机率为5/6--总和即为1(1/6+5/6=1)。这看起来很理所当然,但是当我们间接推算机率的时候,这可是相当好用的方法。举例说,你想要知道在一副正常的52张牌中,抽中梅花的机率是多少。但是你並不了解整副牌的组成元素。你只知道抽中非梅花的牌的机是3/4。其实知道这样就够了。 8 c1 N$ B8 R& f9 D; i
P(抽中梅花的机率)=1-P(抽中非梅花的机率) & v. R8 I2 c( [0 {
=1-3/4 $ u3 Y9 b- R- ?
=1/4
) F M/ P+ l6 `* Y2 C* y6 @* @$ N# J: v. C7 h4 N$ y; U0 \1 T
(3)连续事件发生的机率等於各独立事件机率的积 3 N3 T: S& @$ o W/ [9 X! n" k
是的,这听起来很复杂,但是你或许已经很熟悉这个规则的运用方式了。这么说吧!假设你想要计算连续丢出两个1点的机率好了,丢一次骰子获得1点的机率是1/6(共有六种可能的结果,只有一种是你想要的),而掷出两次1点的机率为:1/6X1/6=1/36。每次掷骰子都是「独立事件」(两者互相无关),而发生这种「连续事件」(丢出两次1点)的机率即为二独立事件(1/6)的积(即相乘的结果)。因此,这连续事件並不一定是要同一颗骰子丢两次才行,如果同时丢两颗骰子,也可以构成连续事件--因为两事件各自独立。 0 I( d4 E9 @" e
再举另一个例子:你同时丢一颗骰子跟铜板。那么,你丢出铜板正面且骰子为1点的机率为何?此为二独立事件,该事件的机率即为两独立事件的积。丢出铜板的机率是1/2,而丢出骰子1点的机率是1/6。因此发生此事的机率为1/2X1/6=1/12。
' f4 c9 G. b1 o
0 d* ^* Y! h/ ]5 d, _% M(4)两非独立事件发生的机率亦为两者的积,然而,当事件发生时,后发生的事件会受到先发生事件的影响。
J/ l z6 p7 u这又是个令人困惑的说明,但是如果举个例来说就很清楚。例如:你想算在一副牌牌中,连续抽中三张梅花的机率。它的机率为13/52(52张牌中有13张梅花)X12/51(一张梅花--一张牌已被抽走了)X11/50(两张梅花--两张牌已经被抽走了)=0.0013或是1.3%。如果你在每次抽完又把牌再放回去,那就变成独立事件,抽到三张梅花的机率13/52X13/52X13/52=0.16或1.6%。
9 q1 }' Y9 ^! L* ] c# V# Z# H/ |
经典的机率实例
; v' s9 ?2 f$ R8 o即然我们已经了解机率的基本概念(不是吗?)我们就来看一个经典的机率实例,让它告诉我们现代机率理论是从何起源的。
/ @% A; ^0 a) b1 Q在十七世纪,一位名为薛瓦里耶。德美尔(Chevalier de Mere)的法国贵族,他是一个用骰子来赚钱的骗子,他跟对方下同等金额的注,赌说掷4次骰子,至少有一次会出现6点。他的理由如下: " \5 \5 W* w. {, _" Z Z- Q
P(6)=1/6
5 y" n- _* B0 x& m+ m0 UP(6)=掷4次的机率=4X1/6=2/3 / Q6 e* c ]7 q. B" v e/ P
他的这种赌法赢了不少钱。虽说他的推理是错的--我们等一下很快就会看到--但是他还是佔有优势。(你已经知道他为什么错了吗?)
& {6 o: v" U' i6 n: `当玩这种游戏的受骗者变少后,薛瓦里耶开始改玩另一种赌注。他也是用同等赌金,打赌在掷两颗骰子24次时,至少会出现一次两个6点。他的推理如下: 9 o8 D5 I& c7 [* k
P(6,6)=1/36 " ]( k0 c: ?' B! ^2 S
P(6,掷24次中出现6的机率)=24x1/36=2/3
3 Z# y! q& {4 P8 l7 N但令他惊讶的是,他开始输钱了。所以他就问他的朋友--数学天才巴斯卡,为什么会发生之种事?巴斯卡觉得相当有意思,就问另一位数学天才德佛美。他们的想法一致,因次就創造出现代机率理论。(而我们竟要感谢一位骗子的老祖宗!)让我们来看看他们研究薛瓦里耶的问题的结果。 / Q- _" E9 P( S# P. ?
在第一个例子中,我们知道 在任一个骰子中,掷出6点的机率是1/6。但是,解决这个问题的真正方法,是要算没有丢出6点的机率是多少?很自然地,它就是5/6。所以,如果薛瓦里耶想知道真正的结果,他得知道 掷4次骰子时,没丢出6的机率。每次掷都是独立事件,请用上次提到计算独立事件机率公式,我们就会得到以下的结果: 6 q2 c$ g4 S) f. t& r( f
P(4次中没有掷出6点)=5/6x5/6x5/6x5/6=0.482
; Q/ M$ M& Q8 N5 \1 K这表示有48.2%的机率不会丢出6点,因此薛瓦里耶算错了那个赌注。现在要算至少丢出一个6点的机率就很容易了。记得,有些结果一定会发生,那就是为什么我们用1减掉0.482。
. t7 z" P- W* a/ O+ ^- oP(掷4次骰子出现一次6点)=1-P(掷4次没出现6点的机率)
v. C' L U% U" b! M/ e =1-0.482
* Y$ z# r0 ~7 q: J =0.518
" r# x2 Y2 V% x+ L2 \所以,薛瓦里耶有51.8%的机率赢他的同等金额赌注,这就是为什么他能赚钱的原因,虽然机率不是他想的2/3。用倒回去的方式解决这个问题,虽然似乎和直觉相反,但实际上是比较容易算的。
5 s2 H. f" w# x$ w. n 薛瓦里耶最初的理由也是站不住脚的,如果我们再往下看一个步骤,用他错误的方法:如果掷6次骰子,掷骰子的人必定会丢出一次6点。很显然这是错的,也让我们知道为什么要算没发生该事件的机率是合理的。
+ `# A+ i2 i, ^( ]+ L 现在让我们看看薛瓦里耶输的那个游戏:他想知道 在掷出24次骰子中,同时出现两个6点的机率为什么不是24/36。同样的,算出不出现的机率也是比较容易的:
" h5 {- m- i+ l% a+ K8 h P(掷出24次骰子没掷出12点的机率)=(35/36)^24 & i4 o+ _: s2 A, F
=0.509 1 @! \- g/ @( b* o6 |
因此: 2 b* g" e" b- P- j7 F: J
P(掷出24次出现一次12)=1-P(掷24次骰子没掷出12点的机率)
7 s% h8 B: z, O =1-0.509 . }. V. R. w5 @/ C
=0.491
$ s0 K L/ V X% V/ | W9 i4 g
; ]9 A" Y: g' t$ W 啊哈!薛瓦里耶在第二种游戏中的机率只有0.491,也就是只有49.1%得胜,那就是为什么他会在这个相同赌注的游戏里输的原因,老千反被老千误,但是他真的很幸运,因为有当时最历害的几位数学家帮他解围。 ' x4 {. L) ~" L; E$ o
3 h9 R3 w( ?, N. u+ ^一旦我们了解到一件事发生的机率,下一步就是想到该事件发生的「比」。如果说机率所描述的是一椿希望发生的事件与所有事件间的关系,则比所描述的则是希望发生的事件与不希望发生的事件间的关系。
) }9 Y+ l( y3 H& c/ \8 u就传统而言,比通常被认为是「不发生」该事件的比。这或许是你在进DC玩任何游戏时,最先想知道的吧!
( [0 d9 D! T7 F- |9 S8 V让我们再拿梅花的例子来说,我们知道它的机率是1/4;四次当中有一次成功的机会,有三次失败的机会,因此,该事件(抽到梅花)真正的比是3(失败的机率)比1(成功的机率)。或许这时候你会皱眉头想一下,「但是一副牌不是有52张吗?3比1的真正意思是什么?」好的,说3比1等於是说39(非梅花的张数)比13(梅花的张数),分数巳被化简过了。 2 P6 q, C$ o" X) i% i3 v8 ]- r
当你丢一颗骰子,希望丢出2。丢出2的机率是1/6。比率是5比1;这也可以写成5-1。要了解「A-B」等於是说「A比B」。 . `' D r* R3 s
* Y" H, U Y& e ?2 U
比不一定永远是「多少比1」,但是所有的机率都可以写成比。遵守一个原则:把机率写成分数,假设是X/Y。记得,Y是所有可能发生的机率。而X是成功的或是希望发生的机率。所以用Y减掉X,你就可以算出所有你不希望发生事件的数目,然后就可以算出比。发生X事件的比为「Y-X比X」。假设某事件发生的机率为9/35。这不是个漂亮的数字,但我们还是算得出来。该事件发生的比是26比9。习惯上,我们会把它化简成一个较容易了解的形式,即使它不是整数。例如26比9可以化简为2.89比1。 - k* Z- t- r0 R
X/ c4 z; J; ~# _+ r) J/ C: _% O, C+ p% S! g/ j6 t
|
|
|
|
|
|
|
|
|
当前离线
经验:
天策币:
活跃币:
策小分:
总在线: 1038 小时
本月在线: 0 分钟
|
|
|
|
|
|
|
|
|
|
当前离线
经验:
天策币:
活跃币:
策小分:
总在线: 85 小时
本月在线: 0 分钟
|
|
|
|
|
|
|
|
|
|
当前离线
经验:
天策币:
活跃币:
策小分:
总在线: 4096 小时
本月在线: 30 分钟
|
|
re:[u][b]DC比[/b][/u]真...
娱乐城比 ?' S! c, b- ^, r+ @
真正的比,也就是一件事发生实际上的机率,可以在娱乐城里看出来。不然,长久下来,娱乐城是赚不到钱的。娱乐城比会告诉你从你的赌注中,你将会赢回多少钱。如果娱乐城的比是2-1,而你赢了,那就表示你每赌一单位,你就会赢回你原本赌注的两个单位。所以,如果你在一个2-1的游戏中赌1元,而你赢了,则你该拿回2元的利润及你原本的一元赌注,总共是3元。(这种比可写成不同的形式:2比1、2-1、2:1。)1 v* k/ N0 `" b- F0 o
而同额赌金的赌注表示其比1-1。在这情形下,如果你赢了,你将会赢得与你赌注相等的金额。(1元同额赌注会赢回2元-----你原来的赌本加上1元的获利。)) _2 d& x1 @$ S j* _3 R4 i& Q
有些游戏会标示它们的机率是「A赔B」而不是「A比B」。如果是这样的话,你每次赌B,A的总额将还给玩家,包括玩家的赌本。例如:一个赌注是5赔1,而你下注1元,你将会拿回5元,这个数字就已经把你的赌金包含在内了。所以你实际上的获利只有4元,因此5赔1的赌注实际上是4比1的赌注,这其中有很大的差别,不要因为看到数字比较多,就以为你会拿回比较多钱----要看看是「赔」或是「比」,而且你要知道7 u9 W# ^# w$ N q i; w
「A赔B」等于「(A-B)比B」。
5 D# {( r+ Q s' Z2 z* x& \, O这个比,大家要小心,很多人就会搞错。给个小习题大家做,大家在21点赌台上面看到的$ j6 r1 ^3 W" f2 B& }1 [
BLACKJACK PAYS 3 T0 2 和 INSURANCE PAYS 2 TO 1 是什么意思呢?+ d5 @6 I0 x5 T$ P9 k( a+ M5 d
) m' L' N4 T- ~了解娱乐城的优势% `' ], D4 Q4 f; Q$ J! \
我好像听到你这样说:“谢谢你帮我上机率课,但是我是准备要去赌一把的啊!”别这么急,难道你不想知道娱乐城怎样从你身上榨钱,而这样的机率有多大吗?机率和比让你了解到在一个公平的世界里,你该期望些什么?但是我的朋友啊!娱乐城可不是一个公平的世界。0 s' g) N$ V! y; @
玩家口袋的钱之所以会跑到娱乐城保险箱里的原因,是娱乐城根本没付他们所该付的。他们並没有作弊,他们也没有耍老千,他们也不是靠玩家手气背或是太笨(虽然这样对他们很有帮助),但他们靠的是数学。我们一起来看它是怎样运作的吧!" c" z- R9 @" V6 _
6 O3 e9 q ^/ G ^期望值
v6 |2 g0 y7 [8 C: u7 c3 T5 L现在该是秀出Dubo101法宝的时候了。是的,你猜到了,是铜板。假设你朋友找你玩个游戏:她抛一个铜板,你猜出它的正反面。如果你猜对了,你就蠃1元。如果你猜错了,你就输1元。如果铜板没有机关,是公平的,但这是个很无聊的游戏。最终,有一半的机会你会赢1元,一半的机会你会输掉1元。你获得的钱就是根据实际比(1-1),而最终,你不会输钱或蠃钱。你的期望值是0。
, m: B' r* B6 x/ m/ \但你可别希望当地的娱乐城(或是你那些比较有心机的朋友们)会让你玩这种游戏。娱乐城版的游戏很可能会是这样:如果你猜中了铜板的正反面,你会赢90分;如果你猜错了,你会输1元。当然你早就知道那是很差劲的,那你对该游戏实际上的期望值是多少呢?期望值,通常指的是期望的值、期望的结果、期望的胜利、期望的回收,它可以告诉你所下的赌注可以期待赢或输我少。为了要算出我们能期待赢(或输掉)某个特定的赌注,我们要看看输赢的结果及其与金钱的关系。这会告诉我们特定一个赌注的期望值(在这里简写为E)。我们来看看你在这个赌注中的期望值:
) i9 e1 W. D a ~
; s7 d" n. h; a: U9 QE=[P(赢的结果)X(赢的数目)]+[P(输的结果)X(-输的数目)]
+ d) o% T5 d; ^E=[P(猜对正反面的数目)X($0.9)]+[P(猜错的数目)x(-$1)]# m; ~/ D. I1 _# |0 s
=[(1/2)x(0.9)]+[(1/2)x(-1)]=-0.05
( y" G1 O1 O+ X! n. N因此,你每赌1元,可想而知会输掉5分(0.05元)。如果你玩这游戏玩得夠久的话,娱乐城就会赢去你所有的钱啰!
}( |) L* Q3 y+ |/ j! q3 n
5 v+ m/ e3 H( c2 q2 t; D 我们用铜板举例是因为它明瞭易懂,但是它实在是太过简单了。上述所有规则几乎适用於所有娱乐城的游戏,最重要的是,娱乐城藉由付出低於实际机率的钱,以达到营利目的。你或许算不出一个特定游戏的每个数字,或者知道它确切的统计数字(这就是为什么我在这里的原因了),但是现在你巳经知道,当你没有得到与机率同等的报偿时,你是居於劣势的,就像刚刚丢铜板的例子是一样的。
( R# Q+ D! u" D' \ 你要成为一位认真的赌者,绝不能把期望值放在一边不管,因为有个很好的理由--期望值让你知道你该怎样计划,在最后都能把你的钱从一个游戏(或一把赌注中)赢回来。你可以用期望值当作你玩游戏的黄金准则,或者你可以把期望值变成一个你比较熟悉的词--庄家优势。; J* Z/ w# x% I0 @
- _$ J: t! I; h2 u6 X庄家优势5 [% V. P7 b+ R" z: K
庄家优势,也叫娱乐城优势,是通常用来衡量一种游戏的指标。庄家优势越大,娱乐城就有越多优势。
k5 q* z" d; R2 m4 `9 [很简单,庄家优势只是把期望值换成百分比而巳。这要怎么算呢?首先,我们要把它转成最简单的形式,所以你要把期望值除以赌注的总数,以获得你每赌一元期待有多少结果。举例来说,如果你每赌3元的期望值是-$0.06元,每一元的期望值就是-$0.02。(如果可能的话,我们以一元为单位来计算期望值,然后略过这个步骤,因为这样的期望值已经是每一元赌金的期望值了)你只要再把期望值前的负号去掉,然后再乘以一百,变成百分比。因为传统上百分比都是「正」的 ——从庄家的角度而言-- 我们不得不屈就於现实,因为大部份娱乐城里的游戏都是对庄家有利的。
% Y# x/ _: q' C- m9 I( F/ k以丢铜板的游戏而言,你会得到以下的结果:( 我列出除以每一元赌金这个步骤,虽说这通常是不必要的。)
; Z0 W3 P+ \* h, B+ m- A* }庄家优势=(0.05X100)/1=5%, b9 K" w$ A" z6 S6 O3 f
庄家优势正告诉了我们期望值的作用:每1元里有5分($1里有5%)最后会变成庄家的。就玩家的观点而言,它应该是负的才对。如果你偶然遇到了玩家期望值是正的机会——表示你可以在游戏中赢钱?在这样的情形下,庄家优势是负的,这是很令人困惑的,但是如果你站在娱乐城的角度来看,就是一致的。; U7 @- x0 U3 a5 c$ {; U0 \5 B% s
描述游戏期望值的各种不同方式( L- w( ~( A f, A
双零轮盘# a! k7 I+ \+ N/ A, Z- _, N
玩家每赌一元的期望值 -0.0526
1 [9 c* Q3 L T* J2 K庄家优势 5.26%/ J( j. ? z8 G# R! ?& S0 [! H$ {
理论上每次赌注会输的金额 $0.0526
. }3 Z. c4 J# s. n3 O8 w) Q, @回收百分比 94.74%
- B$ R$ P! b$ ]+ T9 m理论上每一元可以回收的金额 $0.9474
C1 T3 b7 J* K3 ~在很多地方,庄家优势都将以正数表示,那表示它对你不利。它越高的话,情形就越糟;当它是恰当的时候,我们就会提到玩家正的期望值。另一种表示的方法,就是提到报酬率。我们在提到吃角子老虎机及电动扑克机时常提到它,这跟提到庄家(庄家优势)能赢多钱的表示方式正好相反,报酬率指的是玩家能赢得多少钱。如果说一个东西能有97%的报酬率,则表示你每赌一元可以回收97分,而庄家获得3分。! l5 v$ t# D1 M6 O" f4 z
待继。。。。 z+ v1 f, c2 L9 y' w: G Z
|
|
|
|
|
|
|
|
|
当前离线
经验:
天策币:
活跃币:
策小分:
总在线: 255 小时
本月在线: 0 分钟
|
|
re:很好的一个课题,Dubo就是需要学习各方面的...
|
很好的一个课题,Dubo就是需要学习各方面的知识,打下稳固的理论基础,不想盲赌就要努力学习。 |
|
|
|
|
|
|
|
|
当前离线
经验:
天策币:
活跃币:
策小分:
总在线: 238 小时
本月在线: 0 分钟
|
|
re:忍,等,稳,狠,这四个字说得太好了
忍,等,稳,狠,这四个字说得太好了
; c3 J: ~( i7 P6 R, j) d' i$ w |
|
|
|
|
|
|
|
|
当前离线
经验:
天策币:
活跃币:
策小分:
总在线: 4096 小时
本月在线: 30 分钟
|
|
re:[b][size=2]继续上课。。[...
继续上课。。
. U. l6 m# p0 u6 L F让我们来玩个游戏吧
. Z2 E' X" n7 D, `1 [6 j% J, J0 g9 t让我们把所知的规则运用在一个很简单的机率游戏:假设当地的娱乐城迫不及待地发明出这种无聊的游戏:在一个黑碗里装13颗弹珠,包括9颗蓝的,4颗红的,所有弹珠的大小重量相等,除了颜色以外没有其他差别。每次玩游戏时都是任意选取弹珠(没有经过刻意的挑选),你可以赌说它是红的或蓝的;娱乐城的比是蓝弹珠7赢5,红弹珠3比1。你该玩这个游戏吗?如果你想下注的话,该如何下注呢?首先,我们列出所有可能的机率:2 C- e+ C/ K2 i' O( n" j w
弹珠游戏的机率5 o% P6 {* B1 x2 Z7 Z& q- Y
事件 抽中蓝色的机会
0 ]6 x1 x* P. z" |- F* y分数 9/13
1 G3 V+ S" E3 s. \) ]3 w小数 0.6923( j& H% o" {* _8 U; I3 s
百分比 69.23%
. ^; V, E! `) x( Q; k- D2 E# u比例 4比9
y0 ~7 `# b h5 y) M发生机会 1.44次中有1次7 H+ g! E" ?( {! u/ V
事件 抽中红色的机会2 b) u5 @, ~! C U4 r1 B
分数 4/13
, q# d2 e: c5 I/ d7 W3 \小数 0.3077/ ~' R( H( A. @* u
百分比 30.77%
5 h* J3 r0 ^# a) S比例 9比4
$ V3 d) i: v& \发生机会 3.25次中有1次
" k- V% G" d" G3 q0 n0 j我们来看看你赌蓝色的话会发生什么事?因为它的赔率是7赔5,实际上也就是2比5(如果你觉得困惑的活,请见前面的「娱乐城比」)。
`8 ]8 p/ @8 S这表示当你赌5元时会有2元获利,而你也会把你的5元赌金赢回来(总金额是7元)。请比较娱乐城的比2比5和实际应有的比为4比9;在娱乐城里,你要赌10元才能赢4元,而实际上的比卻显示你只要花9元就可以赢4元。在这里我们就能夠看到娱乐城的典型作法,付比实际上应付的钱少以获利。现在我们来算算期望值及庄家优势。记住,你每赌5元,抽中蓝色的话只能帮你赚2元:
( y0 j) x* A( c5 ~! l/ KE=[9/13x(+2)]+[4/13x(-5)]
! }8 T$ R9 _1 d6 f- n# G$ ] = -2/13=-0.1538, @: i" _$ s( Z; j
每一元赌注的期望值=-0.1538/51 e: O) J* W# z5 j, v
=0.0308
4 J. m; p; c* s1 {6 a/ Q庄家优势=3.08%
7 q, T. A; ]8 g所以我们每赌一元,就期望输掉3分。这虽然看起来不怎样可怕,但也不怎样好。再接下来我们要讨论怎样估计庄家优势。
9 H e5 r7 D+ G9 U* Z( [ |
|
|
|
|
|
|
|
|
当前离线
经验:
天策币:
活跃币:
策小分:
总在线: 4096 小时
本月在线: 30 分钟
|
|
re:[size=4]现在我们来看看赌抽中红色...
现在我们来看看赌抽中红色的情形:比例显示为3比1,把它与真正的机率9比4相比,如果你赌4元会抽中红色,娱乐城会给你12元,再加上你原来的赌金,实际上的机率告诉你只会赢9元。嗯,我们来算算庄家优势的期望值:
$ d9 K; M) z6 hE=[9/13X(-4)]+[4/13X(+12)]=12/13% S+ i, S" i6 K5 G
=0.92317 X# P. ]4 }1 i# f3 r r
每赌1元的期望值=0.9231/4=0.2308" ~0 g( ^, c/ p7 v1 Q
庄家优势(?!)= -23.08%( P6 @* l" }4 ^8 v1 l0 U+ }/ B
看起来似乎娱乐城犯了一个大错。庄家优势並非是优势啊(因为出现负号)!这样的赌注可是对玩家大大有利。玩家每赌一元最终就可期望回收23分。对娱乐城而言,这个虚擬游戏大概会被称着「不幸的13」吧!
& V, S5 }* w7 ^+ V你或许已经注意到了两种不同的机率表达方式:7赔5和3比1。这样做是为了要让你更熟悉机率的表达方式,但我也偷偷地犯下一个每个玩家都想发现的「错误」。(可别因此就抱着希望,因为你很少或几乎是没有机会找到这种错误,机率接近0。)一家精明的娱乐城会把抽中红弹珠的机率改成3赔1,也就是2比1。这就完全地改变了赌注的期望值,而结果就变成庄家优势是7.69%,那可是有很大的不同喔!(你自己算一次看看吧,来吧!我知道你很想算一次。)一个游戏告示的印刷错误,对精明的玩家而言就像天堂一样,而对娱乐城来说则是场大灾难。就像我说过的,你绝对不可能遇到那样的事,即使是接近那样的事也相当不可能,但那也是个诱人的好例子~或许有些夸张吧~告诉你了解怎样下赌注是值得的。 |
|
|
|
|
|
|
|
|
当前离线
经验:
天策币:
活跃币:
策小分:
总在线: 4096 小时
本月在线: 30 分钟
|
|
re:[b][u]思考庄家优势[/u][/b]...
思考庄家优势
, C, S F8 l, e9 h3 c, e藉由数字的计算,可以让我们知道庄家优势的具体概念,但是我们别忽略这优势告诉我们什么----娱乐城佔优势的时候並非我们输的时候,而是我们赢的时候。是的,你没有看错。在大部分的游戏中,庄家优势榨乾了你赢的钱,並非你输的钱。为什么呢?因为当你赢的时候,你並没有拿到合理的赌金。7 g w0 \! X# d/ A2 G7 [0 k( {
我们已经看过它了。回到丢铜板的例子吧。真正伤害你的並非你输1元,而是因为你赢的时候只得到90分。最终你的输赢总和----也就是你猜正反面的结果----会是相等的,但是你的钱卻不相等,因为你赢的时候並没有获得足够的钱,这就是娱乐城偷偷抽税的方法。玩家们总是在为自己输钱懊惱不已----当然,这在短期内是会造成伤害的----但是他们真正该担心的是,当他们赢的时候「输掉」多少钱?很少玩家知道或观察到因为庄家少给钱,所以他们玩的並不公平的游戏。
3 N3 M' f0 B+ \8 f你可能偷笑地想著:「别想用似是而非的话迷惑我,我赢的机会总比输的多。」我同意。如果我知道我总是会赢,那我就不用去想我得到的是不是真正应得的比例,或是恰当的比例,但很可悲的是,事实和机率告诉我们,我们会赢一些也会输一些。这样说吧:如果娱乐城有个游戏只有两个选项让你下注,而你两边都下注,你还是会输。你不会没输没赢。你不能打平的理由是因为你赌赢的那边----那是一定会发生的事,因为只有两种可能----没有给你它该付的,而与输的那边无关。
* q2 F% _( D0 @' }这在玩轮盘时最明显了。你在每个数字上都下一样的赌注,轮盘停下来的时候,当然会落在其中一个你下注的数字上。那么,你会赢钱吗?当然不会。每个数字真正的比是37比1,而娱乐城只会付你35比1。如果你在每个数字上都下注1元(共37元,单零轮盘),你赌中的那个数字只会帮你赚35元,加上你原本的1元,你总共还输1元。你没得到你应得的数字,而那就是庄家优势。了解这狡猾的机制怎样运作是很重要的,别认为你是在猜迷游戏中跟庄家比赛,因为你时间算错或是运气不好才让你输的。你是真的在跟他们玩一个你最终不可能赢的游戏。要成为一个老练的娱乐城玩家或职业赌徒,你就要了解娱乐城的秘密收费。 |
|
|
|
|
|
|
|
|
当前离线
经验:
天策币:
活跃币:
策小分:
总在线: 98 小时
本月在线: 0 分钟
|
|
|
|
|
|
|
|
|
|
当前离线
经验:
天策币:
活跃币:
策小分:
总在线: 7 小时
本月在线: 0 分钟
|
|
re:很好的一个课题,
很好的一个课题,
; R9 @6 r4 }* _$ F5 d |
|
|
|
|
|
|
|
|
当前离线
经验:
天策币:
活跃币:
策小分:
总在线: 255 小时
本月在线: 0 分钟
|
|
re:这么好的文章,居然如此少人看,可惜,可惜...
|
|
|
|
|
|
|
|
当前离线
经验:
天策币:
活跃币:
策小分:
总在线: 18 小时
本月在线: 0 分钟
|
|
|
|
|
|
|
|
|
|
当前离线
经验:
天策币:
活跃币:
策小分:
总在线: 42 小时
本月在线: 0 分钟
|
|
|
|
|
|
|
|
|
|
当前离线
经验:
天策币:
活跃币:
策小分:
总在线: 87 小时
本月在线: 0 分钟
|
|
|
|
|
|
|
|
|
|
当前离线
经验:
天策币:
活跃币:
策小分:
总在线: 533 小时
本月在线: 0 分钟
|
|
re:[COLOR=#ff0000]真是好文章...
真是好文章
; A7 `4 r* J1 d9 Y8 B6 O- E* B1 p
|
|
|
|
|
|
|
|
|
当前离线
经验:
天策币:
活跃币:
策小分:
总在线: 16 小时
本月在线: 0 分钟
|
|
|
|
|
|
|
|
|
|